Here is the CMT Uptime check phrase
What kind of questions would you ask if you had access to the full DNA makeup of tens of thousands of people? Would you look for disease-causing mutations? Would you be curious about how modern humans are related?

Those are some of the issues that researchers are studying as part of a project called TOPMed, the Trans-Omics for Precision Medicine Program. Supported by the National Heart, Lung, and Blood Institute, TOPMed involves about 1,000 researchers—including several from the University of Michigan School of Public Health—and 30 working groups conducting 80 studies around the world.

In a landmark study published in Nature, researchers explain how they’re using existing data, sophisticated algorithms and collaboration to look into human evolution at the genetic level after sequencing the whole genome of 53,831 people of diverse genetic backgrounds.

Researchers hope their work will eventually lead to the improvement of disease diagnoses, treatment and prevention.

Co-authors affiliated with U-M include Daniel Taliun, Sarah Gagliano Taliun, Jonathon LeFaive, Hyun Min Kang, Sayantan Das, Thomas Blackwell, Albert Smith, Keng-Han Lin, Jacob Pleiness, Xutong Zhao, Sebastian Zöllner and Goncalo Abecasis, all of the Department of Biostatistics and Center for Statistical Genetics at U-M’s School of Public Health, and Cristen Willer of the departments of Internal Medicine and of Human Genetics at U-M.

Read the full conversation by clicking on the title link.